Herpes virus reactivation in the ICU

M. leven BVIKM 07.04.2011

VP Introduction: Viruses identified in critically ill ICU patients

- Viral diseases have recently been the subject of numerous investigations in critically ill patients in ICU
- Which viruses for ICU non-immunocompromised patients??

Virus	Endogenous	Exogenous*
Community	HSV, CMV	Influenza, parainfluenza, adenovirus,rhinoviruses, RSV, coronaviruses, metapneumovirus
Nosocomial	HSV, CMV	Mimivirus (??), CMV (transfusion), H1N1 pandemic influenza

- Herpesviruses: the threat from the inside!!!
- * Limited in non-immunocompromised patients

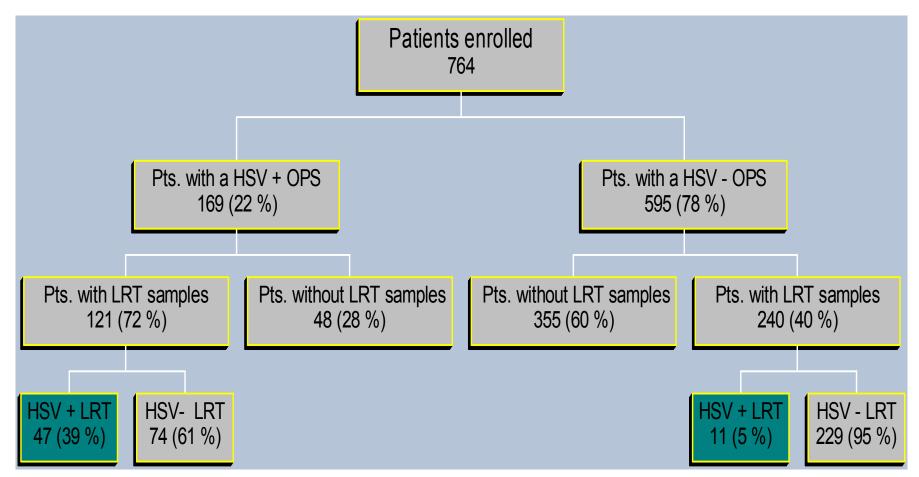
Ver Clinical studies of HSV respiratory infections in critically-ill patients

- Review of 12 studies between 1982 and 2003
- Design of studies: mostly retrospective
- Incidence of HSV in the LRT:
 - 2%- 30% of patients studied
- Clinical manifestations
 - Tracheobronchitis
 - Pneumonia or pulmonary infiltrate
 - Mortality: 0% to > 50%
- Risk factors if studied:
 - Immunosuppression
 - Intubation
 - Age
 - APACHE II score

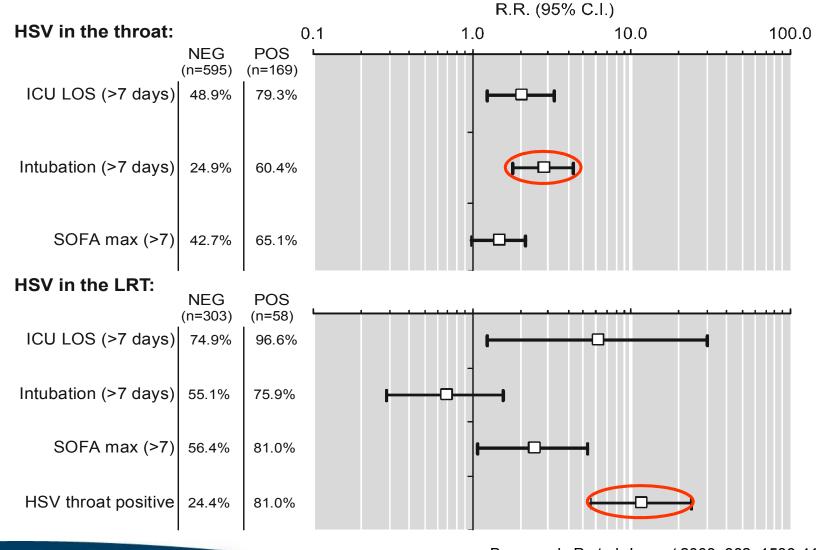
Simmons-Smit AM et al., Clin Microbiol Infect 2006

HSV in the lower respiratory tract

- Incidence of HSV in the LRT:
 - Large post-mortem series: 0.002 0.05 %
 - ARDS patients: 30 78 %
- Radiographic & bronchoscopic findings:
 - inconclusive
- Origin of the virus in the LRT?
 - Endogenous reactivation
 - In the LRT
 - Reactivation in the throat and aspiration?
 - Reactivation in LRT?
 - Hematogenous spread?
- Innocent bystander or cause of infection?



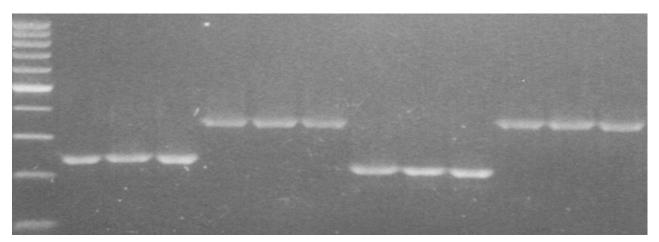
HSV in the respiratory tract of critical care patients: a prospective study


- Objectives: to study:
 - the incidence of respiratory HSV in ICU patients
 - the clinical significance of the virus
 - risk factors for the development of LRTI with HSV
 - Immunosuppression? Surgery?
 - Role of intubation and mechanical ventilation?
 - Role of other pathogens?
 - the origin of the virus, nosocomial transmission?
- Design:
 - During a 20-month period, all adults in ICU for \geq 3d
 - Screened in OPS for HSV
 - BAL of intubated patients cultured for HSV and respiratory pathogens
 - Clinical data and outcome evaluated in HSV+ and HSV patients

HSV in the respiratory tract of critical care patients: profile of the study grou

HSV detected in the throat of 2% healthy volunteers and 3% pts not admitted at ICU compared to 22% in ICU patients (*P* < 0.001)

VP Association between HSV in the respiratory tract and clinical features

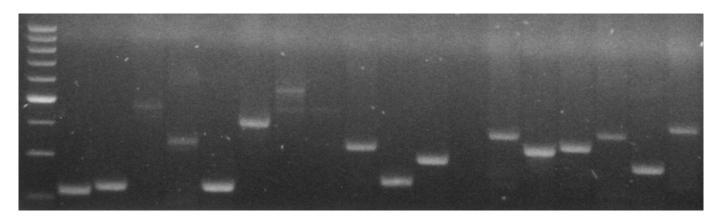


Outcome in patients with HSV in the respiratory tract : a prospective study

	All patients	Throat cu HSV+	lture HSV-	Р
	(n=764)	(n=169)	(n=595)	
ICU LOS UZA LOS mortality	8.5 (3-162) 24.5 (3-254) 194 (25%)	16 (3-162) 32 (3-208) 25 (34%)	7 (3-93) 22 (3-254) 136 (23%)	<0.001 < 0.001 0.003
	All patients (n=361)	LRT cultur HSV+ (n=58)	re HSV- (n=303)	Ρ
ICU LOS UZA LOS mortality	14 (3-162) 32 (3-254) 121 (34%)	24 (4-106) 40.5 (12-208) 22 (38%)	13 (3-162) 28 (3-254) 99 (33%)	<0.001 <0.001 0.45

We HSV reactivation in the throat and aspiration? Genotyping of HSV isolates

- Typing of multiple isolates from the same patient: What is the genetic variability of multiple HSV strains
 - 68 ptn with multiple isolates from throat and/or LRT
 - No genetic differences between isolates, infection/reactivation probably caused by only one strain.



• These data support the theory that infection of the LRT is acquired by aspiration of the virus from the throat

M. leven et al . 44th ICAAC, Washington, Nov 2, 2004.

We HSV reactivation in the throat and aspiration? Genotyping of HSV isolates

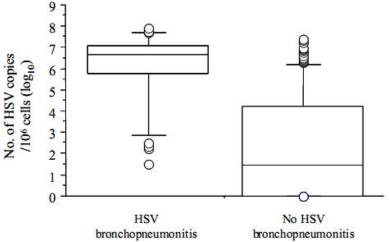
- Typing of isolates between patients: genetic heterogenity: nosocomial transmission?
 - 131 different HSV genotypes can be identified in 143 patients.
 - The genotype within one patient remains stable during the 6 weeks of observation
 - Only in 3/143 patients, nosocomial transmission could not be excluded

There is little evidence of noscomial HSV transmission

M. leven et al . 44th ICAAC, Washington, Nov 2, 2004.

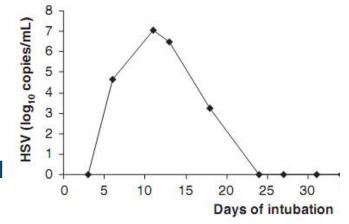
WB HSV lung infection in patients undergoing prolonged mechanical ventilation

- Design: prospective study including all ICU patients with MV ≥ 5d
- BAL, OPS + biopsy if clinical deterioration
- HSV by culture and Q-PCR
- Bronchopneumonitis defined by:
 - Clinical deterioration
 - HSV pos in BAL by PCR and/or culture
 - HSV-specific nuclear inclusions


10

We HSV lung infection in patients undergoing prolonged mechanical ventilation

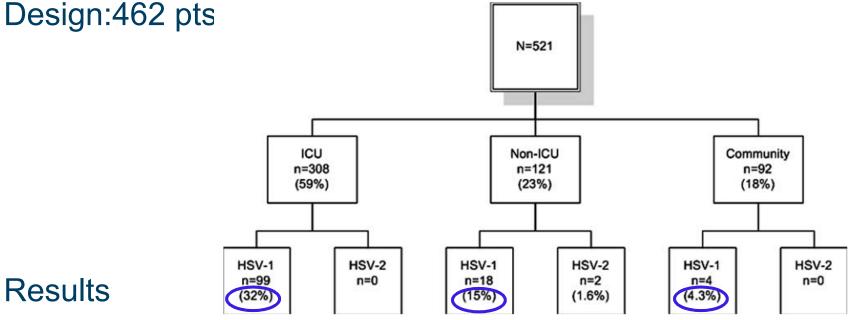
- Results
 - HSV bronchopneumonitis diagnosed in 42/201 (21%)
- Risk factors for HSV BPn
 - Oral-labial lesions
 - HSV-positive throat


• HSV BPn is a descending infection and impacts outcome
•Only an interventional trial will be able to determine its true impact in an ICU setting!!

- Prolonged ICU stay: 40 vs 32d: *P* = 0.01
- VAP episodes: 1.5 vs 1.1 *P* = 0.03
- In hospital mortality: 48% vs 42% NS
- Virus loads
 - Mean 1 in pts with HSV BPn

Monitoring of HSV in LRT of critically ill patients by PCR

- Prospective observational study in ICU patients mechanically ventilated for at least 48h
- Monitoring of HSV by quantitative PCR
- **Results:**
 - HSV common in MV patients: 65/105 (62%)
 - Detection of HSV significantly associated with:
 - Prolonged mechanical ventilation: P < 0.01
 - Prolonged ICU stay: P < 0.01
 - Development of VAP: P = 0.02
 - Monitoring viral loads in the LRT:
 - HSV pos after a mean of 7days of intubation
 - Exponential 1 to HSV peaks 10⁶⁻10⁸ copies/ml

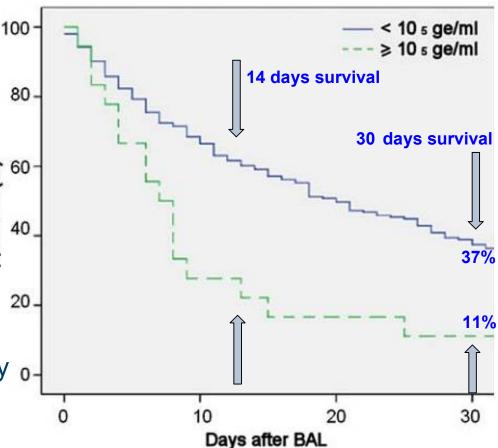

Monitoring of HSV in LRT of critically ill patients by PCR

- Based on suspicion of possible high viral load and clinical deterioration: 46% of HSV positive patients received acyclovir at the physician's discretion
 - No significant difference in patient outcome
 - No significant decrease in HSV viral load
- Conclusions:
 - Q-PCR is reliable for the detection of HSV in the LRT
 - No strong conclusions on impact of HSV on morbidity and mortality
 - Further studies are needed with antivirals vs placebo to analyse the outcome of HSV positive patients

De Vos N et al, Clin Microbiol Infect 2009; 15: 358-363

HSV viral load in BAL and outcome in critically ill patients

Objective: evaluate HSV loads in BAL and clinical outcome

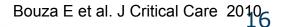


- Results
 - Prevalence:
 - Less HSV in age <50 yrs: 12% vs 25% in age >50 yrs: *p*< 0.001
 - HSV loads >10⁵ ge/ml: 14-day mortality: 41% vs 20%: *p* = 0.001

Linssen C et al, Intensive Care Med 2008; 34: 2202-2209

HSV viral load in BAL and outcome in critically ill patients

- 2/4 pts with loads >10⁵ ge/ml: post-mortem HSV pneumonia BUT
- No data on underlying disease
- Design of study insufficient to prove HSV to be the cause of death in all but 2 pts
- What remains to be determined.
 - is HSV causally linked with 20low survival? or
 - is HSV a marker of severely disturbed immune system?
- A large prospective, randomized intervention study is needed!


Linssen C et al, Intensive Care Med 2008; 34: 2202-2209

HSV: a marker of severity in bacterial ventilator associated pneumonia

- Prospective study: all patients with VAP (n= 177) in 14 months
- Bacterial VAP with HSV compared with those without HSV
- Results
 - HSV in 13.4% of patients with confirmed bacterial VAP
 - Outcome:

• Only a randomized trial evaluating a specific antiviral treatment could answer this question !!

- Conclusions:
 - A significant percentage of bacterial VAP patients shed HSV
 - HSV is a marker of severity
 - BUT the exact significance of HSV in the LRT of critically ill patients is still open for debate

Impact of HSV detection in respiratory specimens of patients with suspected viral pneumonia

- Between 2007 and 2009, all patients with suspected viral pneumonia tests for herpes viruses
- Case-control study: 51 HSV pos and 52 HSV neg patients
- Results:
 - Viral load> 10⁵ geq/ml associated with:

• Mechanical ventilation: 20/21 vs 17/29: *p* = 0.004

ARDS:	19/21 vs 18/29:	<i>p</i> = 0.005
Sepsis:	18/21 vs 14/29:	<i>p</i> = 0.008

• HSV-1 viral loads in respiratory symptoms are a symptom of a clinically poor condition rather than a cause of it !!
•Longitudinal and therapy studies are needed !!

· Patients treated with acyclovir and those who were not treated

Scheithauser S et al., Infection 2010; 38: 401-405

- Prevalence of HSV at ICU: between <10% to >50%.
- HSV in the throat is a significant and independent risk factor for the presence of HSV in the LRT: aspiration from the URT is most likely.
- HSV positive patients have impaired outcome (increased ICU and hospital lenght of stay) as compared to HSV negative patients, even after adjustment for disease severity.

HSV: What we do not know...

- The role of systematic ACV therapy in case of HSV isolation
 - Prevention of LRT infections with HSV?
 - Improve outcome in these patients?

CMV in non-immunosuppressed critically ill patients:pathogen or bystander?

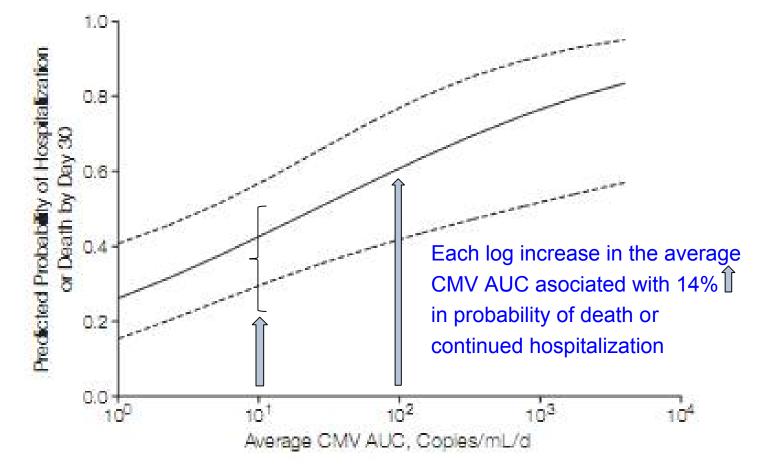
- Incidence of CMV infection:
 - Well known in immunocompromised patients
 - Not part of routine diagnostic approach non-immunocompromised ICU patients
- Origin of the virus in the LRT?
 - Endogenous reactivation
 - Reactivation in LRT?
 - Hematogenous spread?
- Pathogen or bystander?

VP CMV infection in the ICU in nonimmunocompromised adults

- Systematic review of 13 studies:
 - 9 prospective cohorts
 - 4 retrospective studies
- Overall rate of active CMV infection in the nonimmunocompromised ICU patients: 17%
 - varying between 1% and 36%
- Limitations:
 - Relatively small sample size
 - Inclusion of only selected ICU patients
 - Different diagnostic methods
 - Limited control for confounding factors

Kalil A Crit Care Med 2009, 37:2350-2358

Limaye et al Rev. Med. Virol. 2010; 22 372-379


How common is CMV infection in non-immunocompromised adults in the ICU?

Refs.	Viral culture	Refs.	Viral DNA or antigen
Cook et al, 1998	12/142 (8.5%)	Razonable et al, 2002	1/120 (0.8%)
Papazian et al 1996	8/86 (9.3%)	Desachy et al, 2001	1/96 (1.0%)
Cook et al, 2003	10/104 (10%)	Stephan et al, 1996	1/24 (4.2%)
Domart et al, 1990	29/115 (25%)	Jaber et al, 2005	40/237 (17%)
		Von Muller et al, 2006	8/25 (32%)
		Kutza et al, 1998	11/34 (32%)
		Limaye et al, 2008	39/120 (33%)
		Ziemann et al, 2008	35/99 (35%)
		Heininger et al, 2001	20/56 (36%)
Pooled	59/447 (13%)	Pooled	156/811 (19%)

Kalil A Crit Care Med 2009, 37:2350-2358 Limaye AP Rev. Med. Virol. 2010; 20: 372-379

Monitoring CMV infection in ICU patients by quantitative PCR?

- 120 seropos CMV pts in 6 ICU's: 33% reactivation based on PCR in plasma
- Prolonged hospitalization & higher mortallity rate in CMV reactivators

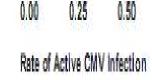
Limaye A et al, JAMA 2008; 300: 413-422 22

Adverse clinical outcomes associated with CMV infection in non-immunocompromised

Adverse outcome	nr of studies
All-cause mortality	Investigated in 8/13 6/8 found association
Increased lenght of hospital and/or ICU stay	8/13 studies
Increased duration of mechanical ventilation	5/13 studies
Increased nosocomial infections	3/13 studies

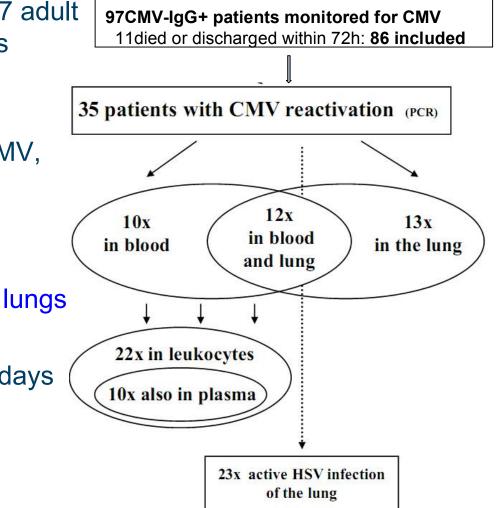
Pooled data from 8 studies showed 75/192 deaths in Active CMV group vs 119/441 in pts with non active CMV infection (*P* = 0.001)

Limaye AP Rev. Med. Virol. 2010; 20: 372-379


Active CMV Infection Rate by Disease Severity

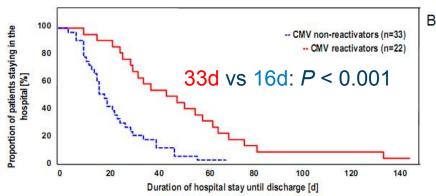
Event rate and 95% CI

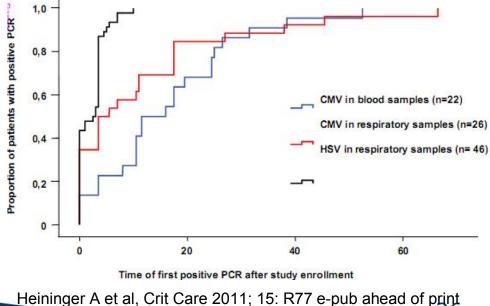
Stephan F 1996	High	1/24 (4.2%)	20 20 X
		1/27 (7.270)	
Heininger A 2001	High	20/56 (36%)	
von Muller L 2006	High	8/25 (32%)	
Limaye A 2008	High	39/120 (33%)	
	High	68/225 (31%)	
Domart Y 1990	Low	29/115 (25%)	
Cook CH 1998	Low	12/142 (8.5%)	
Cook C 2003	Low	10/104 (10%)	
	Low	51/361 (15%)	


*High Severity: APACHE II>20, SAPS>40, SOFA>10. Z=6.26; P<0.0001; Q=11; I2=85%

Kalil A Crit Care Med 2009, 37:2350-2358

CMV reactivation and outcome of critically ill patients with severe sepsis


- Prospective longitudinal study in 97 adult CMV+ pts with new onset of sepsis
- Leucocytes, plasma and tracheal secretions examined weekly for CMV, tracheal secretions also for HSV
- CMV occured in 35/86 (40.7%)
 - 13/35 cases exclusively in the lungs
- Median CMV reactivation after 21 days
- Also HSV reactivation:
 - More in patients with CMV reactivation


Heininger A et al, Crit Care 2011; 15: R77 e-pub ahead of print 25

CMV reactivation and outcome of critically ill patients with severe sepsis

- Increased morbidity
 - LOS in ICU
 - Hospital stay
 - Mechanical ventilation

- CMV reactivation: obvious earlier in tracheal secretions than in blood
- HSV even more frequently and earlier than CMV
- NS difference in mortality
 - 37.1% vs 35.3%: *P* = 0.86
- Even when adjusted for
 - Severity of illness
 - Presence of septic shock
 - HSV reactivation
- ➡ No¹ in hospital mortality

Important factors influencing the rate of CMV infection

- Sensitivity of diagnostic methods used:
 - Viral culture
 - CMV antigenemia or PCR
- Time of screening for CMV after admission to ICU
 - 21% if > 5 days vs 1% if < 5 days
- Type of patients included
 - Medical vs surgical ICU patients
- Baseline CMV serostatus
 - Higher rates if only seropositive patients are included
- Reactivation in blood and/or in the lung
 - earlier, more frequently, higher levels in lung?
- Disease severity
 - 32% in APACHE \geq 20 vs 13% in low severity

Kalil A Crit Care Med 2009, 37:2350-2358

Limaye AP Rev. Med. Virol. 2010; 207372-379

Adverse clinical outcomes with CMV: biologically plausible mechanisms?

- Direct CMV-mediated lung injury (i.e. CMV pneumonia)
 - CMV detected histopathology in 30% biopsies in 3 studies
- dysregulated inflammation in ALI/ ARDS patients
 - Upregulation of key cytokines IL-6, IL-8
- Immunomodulatory properties
 - Increased rate of bacterial, fungal or other nosocomial infection
- severe septic patients:
 - Can develop immunoparalysis or compensatory antiinflamatory response syndrome
 - Bacterial sepsis itself can reactivate latent CMV infection through endotoxin release by bacteria

Kalil A Crit Care Med 2009, 37:2350-2358 Limaye AP Rev. Med. Virol. 2010; **208**372-379

Wext steps to further define relationship CMV & adverse outcome in ICU patient

- Controlled trial of CMV prevention in ICU
- Most appropriate study population:
 - CMV seropositive patients with
 - either sepsis or pneumonia associated ALI/ARDS
- Two major approaches:
 - Antiviral prohylaxis
 - Preemptive therapy
- Emerging data in a murine model:
 - In sepsis-induced CMV reactivation suggest significantly better effect with early (prophylactic) Tx with 1 dose ganciclovir
 - but likely higher risk for toxicity, cost and potential for R

Limaye AP Rev. Med. Virol. 2010; 20: 372-379

(A) 100-100-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (6/14) * * * * @ * @ 0-(1/12) (2/16) (7/14) (

Should HSV and CMV in nonimmunocompromised ICU patients be considered in a different way?

Histological data

- Open-lung biopsies in ARDS patients: more histologic findings compatible with CMV disease, only a few with HSV pneumonia
- Recent study: also HSV bronchopneumonitis but BAL and biopsy only positive in limited nr of patients

Clinical outcome data

- CMV: +/- always associated with¹ duration of both mechanical ventilation and ICU stay, sometimes¹ mortality rate
- Most HSV studies also associated with longer mechanical ventilation and hospital stays, less impact on mortality (??)

Should HSV and CMV in nonimmunocompromised ICU patients be considered in a different way?

Physiopathologic data

- For CMV lung is considered as the main site of latency and reactivation
- HSV: viral reactivation in the oropharynx and lower respiratory tract involvement by aspiration

Therapeutic data

- No trials done for CMV; in a murine model, prophylaxis with ganciclovir prevented postseptic CMV reactivation
- Only one prospective double-blind randomized prophylactic acyclovir study in ARDS patients: prevention of HSV reactivation but no improvement of respiratory failure, duration of ventilator support or mortality

Herpes virus reactivation in the ICU: Conclusions

- Both HSV and CMV occur in 0 to > 30% of critically ill patients at ICU and may be associated with poor outcome.
- HSV in the throat is a significant and independant risk factor for the presence of HSV in the LRT: aspiration from the URT is most likely; CMV occurs especially in sepsis patients.
- Further studies are needed to identify subsets of patients who are at risk of developing HSV and/or CMV infections.
- The "bystander or pathogen" debate concerns both HSV and CMV: definitive proof of causality demonstrating CMV and /or HSV as pathogens awaits controlled clinical trials with specific antiviral therapies.

